Division | Skill | Year | Representations and models | | | |---|------|--|--|--| | Solve one-step problems with division (sharing) | 1/2 | Bar model
Real life objects | Arrays
Counters | | | Solve one-step
problems with division
(grouping) | 1/2 | Real life objects
Number shapes
Bead strings
Ten frames | Number lines
Arrays
Counters | | | Divide 2-digits by 1-
digit (no exchange
sharing) | 3 | Straws
Base 10
Bar model | Place value counters
Part-whole model | | | Divide 2-digits by 1-
digit (sharing with
exchange) | 3 | Straws
Base 10
Bar model | Place value counters
Part-whole model | | | Skill | Year | Representations and models | | | |---|------|----------------------------------|--|--| | Divide 2-digits by 1-
digit (sharing with
remainders) | 3/4 | Straws
Base 10
Bar model | Place value counters
Part-whole model | | | Divide 2-digits by 1-
digit (grouping) | 4/5 | Place value counters
Counters | Place value grid
Written short division | | | Divide 3-digits by 1-
digit (sharing with
exchange) | 4 | Base 10
Bar model | Place value counters
Part-whole model | | | Divide 3-digits by 1-
digit (grouping) | 4/5 | Place value counters
Counters | Place value grid
Written short division | | | Skill | Year | Representations and models | | | |--|------|----------------------------------|--|--| | Divide 4-digits by 1-
digit (grouping) | 5 | Place value counters
Counters | Place value grid
Written short division | | | Divide multi-digits by
2-digits (short
division) | 6 | Written short division | List of multiples | | | Divide multi-digits by 2-digits (long division) | 6 | Written long division | List of multiples | | 20 There are 20 apples altogether. They are shared equally between 5 bags. How many apples are in each bag? $$20 \div 5 = 4$$ Children solve problems by sharing amounts into equal groups. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record division formally. In Year 2, children are introduced to the division symbol. #### Skill: Divide 2-digits by 1-digit (sharing with no exchange) | Tens | Ones | |------|------| | 00 | 0000 | | 00 | 0000 | $$48 \div 2 = 24$$ **Year: 1/2** When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones. Straws, Base 10 and place value counters can all be used to share numbers into equal groups. Part-whole models can provide children with a clear written method that matches the concrete representation. $52 \div 4 = 13$ #### Year: 3/4 When dividing numbers involving an exchange, children can use Base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows. Flexible partitioning in a part-whole model supports this method. #### Skill: Divide 2-digits by 1-digit (grouping) | Tens | Ones | |-------|------| | 10 10 | | | 10 10 | | | 10 | | | | | | | | | | | $$52 \div 4 = 13$$ #### Year: 4/5 When using the short division method, children use grouping. Starting with the largest place value, they group by the divisor. Language is important here. Children should consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?' Remainders can also be seen as they are left ungrouped. #### Skill: Divide 3-digits by 1-digit (sharing) $$844 \div 4 = 211$$ | н | Т | 0 | |--------------|---|---| | 100 100 | 0 | 0 | | 60 60 | 0 | 0 | | 100 000 | | 0 | | 100 100 | 0 | 0 | $$844 \div 4 = 211$$ #### Year: 4 Children can continue to use place value counters to share 3digit numbers into equal groups. Children should start with the equipment outside the place value grid before sharing the hundreds, tens and ones equally between the rows. This method can also help to highlight remainders. Flexible partitioning in a part-whole model supports this method. #### Skill: Divide 3-digits by 1-digit (grouping) | | 2 | 1 | 4 | |---|---|---|----| | 4 | 8 | 5 | 16 | Hundreds Tens Ones $856 \div 4 = 214$ Year: 5 Children can continue to use grouping to support their understanding of short division when dividing a 3-digit number by a 1-digit number. Place value counters or plain counters can be used on a place value grid to support this understanding. Children can also draw their own counters and group them through a more pictorial method. | | 4 | 2 | 6 | 6 | |---|---|---|----|----| | 2 | 8 | 5 | 13 | 12 | Place value counters or plain counters can be used on a place value grid to support children to divide 4-digits by 1-digit. Children can also draw their own counters and group them through a more pictorial method. Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges. $8,532 \div 2 = 4,266$ #### Skill: Divide multi digits by 2-digits (short division) Year: 6 When children begin to divide up to 4digits by 2-digits, 3 06 written methods $432 \div 12 = 36$ become the most 4 3 12 4 accurate as concrete and pictorial representations become less effective. Children can write out multiples to support their calculations with larger remainders. 0 4 8 9 Children will also $7,335 \div 15 = 489$ 7 3 13 13₅ solve problems with 15 remainders where the quotient can be 15 30 75 45 60 90 105 120 135 150 rounded as appropriate. | | | 0 | 3 | 6 | $12 \times 1 = 12$
$12 \times 2 = 2$ | |---|---|---|---|---|---| | 1 | 2 | 4 | 3 | 2 | | | | = | 3 | 6 | 0 | $(\times 30)$ $12 \times 3 = 3$
$12 \times 4 = 4$
$12 \times 5 = 6$ | | | | - | 7 | 2 | $(\times 6)$ $12 \times 6 = 7$ | | | = | | 7 | 2 | $12 \times 7 = 8$
$12 \times 8 = 9$ | | | | | - | 0 | $12 \times 7 = 10$ | $432 \div 12 = 36$ Skill: Divide multi-digits by 2-digits (long division) $12 \times 10 = 120$ $$7,335 \div 15 = 489$$ | | 0 | 4 | 8 | 9 | | | |----|---|---|---|---|-------|----------------------| | 15 | 7 | 3 | 3 | 5 | | $1 \times 15 = 15$ | | _ | 6 | 0 | 0 | 0 | (×400 | $2 \times 15 = 30$ | | | 1 | 3 | 3 | 5 | 3 | $3 \times 15 = 45$ | | _ | 1 | 2 | 0 | 0 | (×80) | $4 \times 15 = 60$ | | | | 1 | 3 | 5 | | $5 \times 15 = 75$ | | _ | | 1 | 3 | 5 | (×9) | $10 \times 15 = 150$ | | | | | | 0 | | | Children can also divide by 2-digit numbers using long division. Year: 6 Children can write out multiples to support their calculations with larger remainders. Children will also solve problems with remainders where the quotient can be rounded as appropriate. ### Skill: Divide multi digits by 2-digits (long division) Year: 6 $372 \div 15 = 24 \text{ r} 12$ | | | | 2 | 4 | r | 1 | 2 | |---|---|---|---|---|---|---|---| | 1 | 5 | 3 | 7 | 2 | | | | | | = | 3 | 0 | 0 | | | | | | | | 7 | 2 | | | | | | - | | 6 | 0 | | | | | | | | 1 | 2 | | | | $$1 \times 15 = 15$$ $2 \times 15 = 30$ $3 \times 15 = 45$ $4 \times 15 = 60$ $5 \times 15 = 75$ $10 \times 15 = 150$ When a remainder is left at the end of a calculation, children can either leave it as a remainder or convert it to a fraction. This will depend on the context of the question. | | | | 2 | 4 | |---|---|---|---|---| | 1 | 5 | 3 | 7 | 2 | | | = | 3 | 0 | 0 | | I | | | 7 | 2 | | i | | | 6 | 0 | | | | | 1 | 2 | $$372 \div 15 = 24 \frac{4}{5}$$ Children can also answer questions where the quotient needs to be rounded according to the context. ## Glossary **Array** – An ordered collection of counters, cubes or other item in rows and columns. **Commutative –** Numbers can be multiplied in any order. **Dividend** – In division, the number that is divided. **Divisor** – In division, the number by which another is divided. **Exchange –** Change a number or expression for another of an equal value. **Factor** – A number that multiplies with another to make a product. **Multiplicand** – In multiplication, a number to be multiplied by another. **Partitioning –** Splitting a number into its component parts. **Product** – The result of multiplying one number by another. **Quotient -** The result of a division **Remainder** – The amount left over after a division when the divisor is not a factor of the dividend. **Scaling –** Enlarging or reducing a number by a given amount, called the scale factor