Addition

Progression in Teaching Addition

Mental Skills

Recognise the size and position of numbers Count on in ones and tens
Know number bonds to 10 and 20
Add multiples of 10 to any number
Partition and recombine numbers
Bridge through 10

Models and Images

Counting apparatus
Place value apparatus
Place value cards
Number tracks
numicon
Numbered number lines
Marked but unnumbered number lines
Empty number lines
Hundred square
Counting stick
Bead string
Models and Images charts
ITPs - Number Facts, Ordering Numbers, Number Grid, Counting on and back in ones and tens

Key Vocabulary

add
addition
plus
and
count on
greater
more
Most
sum
total
altogether
increase

Models for addition

Combining two sets of objects (aggregation)

Models for addition

Combining two sets of objects (aggregation)

Models for addition

Combining two sets of objects (aggregation)

Models for addition

Combining two sets of objects (aggregation)

Models for addition

Combining two sets of objects (aggregation)

Adding on to a set (augmentation)

Requires fluency with counting from any number.

Counting on with a bead bar/number line

Also:

Bead bar and number line (showing 10s) encourages use of number bonds and place value for added efficiencyz

More than single digits?

\square
\square

25 $+47$

25 $+47$

25 $+47$

25 $+47$

$$
\begin{array}{r}
25 \\
+47 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
25 \\
+47 \\
\hline 2
\end{array}
$$

$$
\begin{array}{r}
25 \\
+47 \\
\hline 2
\end{array}
$$

$$
\begin{array}{r}
25 \\
+47 \\
\hline 72 \\
\hline
\end{array}
$$

Children can support their own calculations by using jottings, e.g. $122+217$

0_{0}^{0}

Children can support their own calculations by using jottings, e.g. $122+217$

0_{0}^{0}

T U 67

$$
\frac{+24}{11} 8 \because
$$

$$
\frac{80 / / / / / / / /}{91}
$$

e.g. $164+257$

Subtraction

Progression in Teaching Subtraction

Mental Skills
Recognise the size and position of numbers
Count back in ones and tens
Know number facts for all numbers to 20
Subtract multiples of 10 from any number
Partition and recombine numbers (only partition the number to be subtracted)
Bridge through 10

Models and Images

Counting apparatus
Place value apparatus
Place value cards
Number tracks
Numbered number lines
Marked but unnumbered lines
Hundred square
Empty number lines.
Counting stick

Bead strings
Models and Images Charts
ITPs - Number Facts, Counting on and back in ones and tens, Difference

Key Vocabulary
Subtract
take away (specific use)
minus
count back
less
fewer
difference between

Models for subtraction

Removing items from a set (reduction or take-away)

Comparing two sets (comparison or difference)

Seeing one set as partitioned

Seeing 12 as made up of 5

Useful when two numbers are 'close together', where 'take-away' image can be cumbersome

Helps to see the related calculations;
$5+7=12,7+5=12,12-7=5$ and $12-5=7$ as all in the same diagram

Models for subtraction

Counting back on a number line

Finding the difference on a number line

More than single digits?

72-47

72-47

This is now "Sixtytwelve"

${ }^{6} /^{1} 2$

${ }^{2 \cdot-475}=25 / /$

\square
$\Delta_{\square} \square_{\square}$

Addition and Subtraction:

Both Ways

National Centre

for Excellence in the
Teaching of Mathematics

One or two relationships?

$\begin{array}{r}47 \\ +25 \\ \hline\end{array}$

47 $+25$

$\begin{array}{r}47 \\ +25 \\ \hline\end{array}$

47 $+25$

$$
\begin{array}{r}
47 \\
+25 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
47 \\
+25 \\
\hline 2 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
47 \\
+25 \\
\hline 2 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
47 \\
+25 \\
\hline 2 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
47 \\
+25 \\
\hline 2 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
47 \\
+25 \\
\hline 72 \\
\hline
\end{array}
$$

Multiplication

Mental Skills

Recognise the size and position of numbers
Count on in different steps $2 s, 5 s, 10 s$
Double numbers up to 10
Recognise multiplication as repeated addition
Quick recall of multiplication facts
Use known facts to derive associated facts
Multiplying by 10, 100, 1000 and understanding the effect
Multiplying by multiples of 10

Models and Images

Counting apparatus
Place value apparatus
Arrays
100 squares
Number tracks
Numbered number lines
Marked but unnumbered lines
Empty number lines.
Multiplication squares
Counting stick
Bead strings

Models and Images charts
ITPs - Multiplication grid, Number Dials, Multiplication Facts
Vocabulary
lots of
groups of
times
multiply
multiplication
multiple
product
once, twice, three times
array, row, column

double
repeated addition

Children need to understand the concept of multiplication, that it is:

- Repeated addition
- Can be represented as an array

They also need to understand and work with certain principles:

- Inverse of division
- Is commutative i.e. $3 \times 5=5 \times 3$
- Is associative i.e. $2 \times(3 \times 5)=(2 \times 3) \times 5$

Models for multiplication

Number Line

Fingers

Models for multiplication

Scaling

Children need to understand how arrays link to multiplication through repeated addition and be able to create their own arrays.

$$
5+5+5=15
$$

Creating arrays on squared paper (this also links to understanding area).
$4 \times 7=$

\times							
\times							
\times	\times	\times	\times	\times	\times	x	
\times							

$4 \times 7=\quad 7+7+7+7=$
28

Tell me what you see.
How would you describe them using number sentences?

Arrays to the Grid Method

Progressing towards the standard algorithm

10
8

Division

Mental Skills

Recognise the size and position of numbers Count back in different steps $2 s, 5 s, 10 s$
Halve numbers to 20
Recognise division as repeated subtraction
Quick recall of division facts
Use known facts to derive associated facts
Divide by 10, 100, 1000 and understanding the effect
Divide by multiples of 10
Models and Images
Counting apparatus
Arrays
100 squares
Number tracks
Numbered number lines
Marked but unnumbered lines
Empty number lines.
Multiplication squares
Models and Images charts
ITPs - Multiplication grid, Number Dials, Grouping, Remainders

```
Vocabulary
lots of remainder
factor divide
Quotient division
Divisible divided by
groups of
share
group
halve
```


Children need to understand the concept of division, that it is:

- Repeated subtraction

They also need to understand and work with certain principles:

- Inverse of multiplication
- Is not commutative i.e. $15 \div 3 \neq 3 \div 15$
- Is not associative i.e. $30 \div(5 \div 2) \neq(30 \div 5) \div 2$

Sharing

Children naturally start their learning of division as division by sharing, e.g. $6 \div 2$.

To become more efficient, children need to develop the understanding of division as grouping, e.g. $6 \div 2$.

To continue their learning, children need to understand that division calculations sometimes have remainders, e.g. $13 \div$ 4.

They also need to develop their understanding of whether the remainder needs to be rounded up or down depending on the context.

Recall of multiplication tables helps make this method more efficient, e.g. $72 \div 3$.

e.g. $196 \div 6$
$196 \div 6$

The key facts in the menu box should be extended to include $4 x$ and 20x.

An image for $56 \div 7$

- I move the counters by thinking about how many groups of 7 can I make (grouping)
- But the image helps me to see that 56 shared into 8 groups would mean 7 in each group (sharing)

An image for $56 \div 7$

The array is an image for division

An image for $56 \div 7$ or $56 \div 8$

The array is an image for division

7

$363 \div 3=$

$$
\begin{array}{r|r}
121 \\
\cline { 2 - 3 }
\end{array}
$$

$364 \div 3=$

$$
3 \longdiv { 3 6 4 }
$$

$364 \div 3=$

$$
\begin{array}{l|l}
121 \mathrm{rem} 1 \\
\cline { 2 - 3 } & 364
\end{array}
$$

$345 \div 3=$

$$
\begin{array}{r}
115 \\
\begin{array}{r}
115
\end{array}
\end{array}
$$

